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Abstract

Hitchin’s twistor treatment of Schlesinger’s equations is extended to the general isomonodromic
deformation problem. It is shown that a generic linear system of ordinary differential equations with
gauge group SL(n,C) on a Riemann surfaceX can be obtained by embeddingX in a twistor space
Z on which sl(n,C) acts. When a certain obstruction vanishes, the isomonodromic deformations
are given by deforming X in Z . This is related to a description of the deformations in terms of
Hamiltonian flows on a symplectic manifold constructed from affine orbits in the dual Lie algebra
of a loop group. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of isomonodromic deformations of systems of ordinary differential equations
in the complex plane was a significant topic at the beginning of the last century, when
the classical work of Painlevé, Schlesinger, and Fuchs was published. It has come back
into view in more recent years through connections with quantum field theory [3,16–18],
differential geometry [6,7], and the theory of integrable systems (see, e.g. [1,14]).

In this paper, I shall explore in detail one aspect of the modern theory, suggested by
Hitchin [5]. He considered the twistor space of a four-dimensional self-dual Riemannian
manifold with SU(2) symmetry. This is a three-dimensional complex manifoldZ , in which
there is a four-dimensional family of projective lines corresponding to the points of the
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original manifold and on which the symmetry group acts holomorphically. The action is
generated by three holomorphic vector fields which are independent in an open subset, but
dependent on a special divisor S. By taking the vector fields as basis vectors, the tangent
space to Z is identified with sl(2,C) at each point of the open subset. Thus the action
determines a flat holomorphic connection on the trivial SL(2,C) bundle over the open
orbit.

The restriction of the connection to a twistor line is an sl(2,C)-valued meromorphic
1-form with poles at the intersections with S. In the case that Hitchin considered, there are
four poles and the 1-form determines a Fuchsian system with four regular singularities. As
the line is moved within the family, the poles move, but the monodromy of the system,
which is the same as the holonomy of the flat connection, remains unchanged. By calling
on the classical theory, therefore, one obtains from this geometrical picture a solution to the
sixth Painlevé equation. Hitchin then goes on to exploit this correspondence to construct
self-dual Einstein metrics from certain Painlevé transcendents.

Hitchin’s correspondence between twistor manifolds with symmetry and isomonodromic
families of ordinary differential equations holds more generally. In this paper, I shall follow
through the details of his suggestion for the class of isomonodromic deformations considered
by Jimbo et al. [9–11]. This enables one to understand their results within the framework
of the general deformation theory of Kodaira [12].

In the general setting, we are given a complex Lie group G, a Riemann surface X, and a
meromorphic 1-form α on X with values in the Lie algebra g. We pick a local coordinate z
and write α = −A dz. Then the equation dy+αy = 0 becomes a system of linear ordinary
differential equations

dy

dz
= Ay, (1)

where y is a fundamental solution, taking values inG, andA is a meromorphic function of z.
The first question concerns the existence of twistor spaces: this is answered by Proposition
1, which gives the existence of an embedding of X in a complex manifold Z on which g
acts, with the generators independent on an open set, and from which α can be recovered by
Hitchin’s construction. This structure is not unique, however, even if we restrict attention
to a small neighbourhood ofX inZ . IfA has irregular singularities, then there are different
choices for the way in which a divisor S can be attached to the open set so that the whole
of X is embedded, including the singularities. Different choices give different possibilities
for the normal bundle N of X. By Kodaira’s theorem, the normal bundle determines the
deformations of X in Z: if

H 1(X,N) = 0 and dimH 0(X,N) = d0,

then X is one of d0-parameter family of compact curves Xt , on each of which the g-action
gives a linear system of differential equations. These are isomonodromic (Proposition 6).
It is shown that there is a natural choice for the twistor space (the ‘full twistor space’
in Definition 2), for which the parameter space has the largest possible dimension in the
generic case; a full twistor space exists generically (Proposition 2), and is unique in a
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neighbourhood of X (Proposition 4). In the full case, N can be constructed directly from
α; ifH 1(X,N) = 0, as is the case ifX = CP1, and generally if α has enough singularities,
then every isomonodromic deformation arises from this construction (Proposition 8).

A second theme of this paper is the Hamiltonian nature of the isomonodromic deformation
equations. A Fuchsian system on CP1 is a system with regular singularities of the form

dy

dz
=

∑ Aiy

z− ai
,

where the residuesAi ∈ g = sl(2,C) are independent of z. Apart from gauge and coordinate
transformations, the only possible deformations in the generic case are given by moving
the poles ai . The monodromy is then preserved if and only if

∂Ai

∂aj
= [Ai,Aj ]

ai − aj
, i �= j,

∂Ai

∂ai
= −

∑
j �=i

[Ai,Aj ]

ai − aj

(Schlesinger’s equations). 1 Hitchin [8] interpreted these as a Hamiltonian flow on the
coadjoint orbits of the Ais. This also generalises: when irregular singularities are present,
the flows are on symplectic manifolds constructed from affine orbits in the loop algebra. The
symplectic forms can be written down explicitly in terms of α and the Stokes’ matrices, and,
at least in the case X = CP1, one can also find explicit expressions for the Hamiltonians
(Proposition 9). The symplectic structure is related to the structure ofZ in a neighbourhood
of S.

An appendix outlines the theory of isomonodromic deformations for linear systems on a
general Riemann surface.

2. Twistor spaces

We suppose that we are given a complex Lie group G, a Riemann surface X, and a
meromorphic 1-form α on X with values in the Lie algebra g. Our starting point is to
interpret a solution y : X \ {poles} → G to the equation

dy + αy = 0 (2)

as a complex curve in G and to think of α as the pull-back of the Maurer–Cartan form
on G— the g-valued 1-form whose contraction with a left-invariant vector field is the
corresponding element of g.

In a local coordinate z on X, (2) is a linear system of ordinary differential equations of
the form

dy

dz
= Ay,

where A is meromorphic with values in g. Its poles are the singularities of the system — a
pole of order r + 1 is a singularity of rank r . Some familiar results about such systems are
summarised in the appendix.

1 One pole is fixed at infinity, and has residue − ∑
Ai .
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Of course y is singular at the poles of α, and it is multi-valued, so the embedding in G
is defined only locally. In the twistor picture, we seek to replace G by a complex manifold
Z of the same dimension on which the right action of G is retained and in which the
singular points are included. In principle, the construction involves (i) taking a quotient by
the monodromy group to make y single-valued and (ii) attaching hypersurfaces on which
the right action of G action is not free. The intersections of X with the hypersurfaces will
then correspond to the poles of the differential equation. Except for very special equations,
however, the quotient is not Hausdorff. The best that we can do in general is to construct Z
as a neighbourhood ofX, with the action ofG replaced by an action of its Lie algebra (which
is enough to determine α). The second step is generally straightforward in the regular case,
but is more subtle when the linear system has irregular singularities.

In the context of the deformation problem, we shall adopt a special understanding of the
meaning of the term ‘twistor space’.

Definition 1. A twistor space is a complex manifold Z together with

1. a homomorphism from a complex Lie algebra g into the Lie algebra of holomorphic
vector fields on Z; and

2. a smooth compact complex curve X ⊂ Z
such that the induced linear map φz : g→ TzZ is an isomorphism for some z ∈ X.

Note that dimZ = dim g. For the most part, we shall take g = sl(n,C), but other
examples will also be considered.

Given a basis in g,∆ = det φ is a holomorphic section of ∧dimZTZ . We shall make the
regularity assumptions that

S = {∆ = 0}
is a complex hypersurface, that X is transversal to S, that S is the union of a finite set of
components Si , and that ∆ has a zero of order ri + 1 on Si . These hold in all the twistor
spaces constructed below.

At each z ∈ Z \ S, define θz ∈ T ∗
z Z by θz = φ−1

z . Then θ is a holomorphic 1-form on
Z \ S with values in g. It is meromorphic on Z and satisfies the Maurer–Cartan equation

dθ + θ ∧ θ = 0. (3)

Equivalently, d + θ is a flat meromorphic connection on a trivial bundle over Z . The
restriction α = θ |X determines a system of the form (2), with poles at the intersection
points with S. We then say that (Z, X) is a twistor space for the system.

Example. LetG = SL(n,C) and let t ⊂ g = sl(n,C) denote the diagonal subalgebra. As
an (n−1)-dimensional additive group, t acts on itself by translation, and the action extends
to the compactification CPn−1 when we add a hyperplane at infinity. We also have the left
action of t on G, defined by

g �→ exp(A)g, A ∈ t.
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We put

Z = G× CPn−1/t.

Then the right action of G on the first factor descends to the quotient.
We can think ofZ as being formed by attaching a single hypersurface S toG (the projec-

tion of the hyperplane at infinity in CPn−1). The effect is to compactify the one-parameter
subgroups generated by the semisimple elements of g. IfA ∈ t generates a closed subgroup,
then {tA} ⊂ t compactifies to a projective line in CPn−1, and this in turn projects onto an
embedded copy of CP1 in Z . The corresponding system of linear equations is

dy

dz
= Ay,

which has a singularity of rank 1, a double pole, at infinity (the intersection with S).

Example. Suppose thatX has genus g. LetG = Z be the Jacobi variety (an abelian group
with Lie algebra g = Cg) and let X ↪→ Z be the standard embedding (see, e.g. [4, p. 87]).
The corresponding system is

dy

dz
= A,

where A = (ξ1, . . . , ξg) with the ξs a basis for the holomorphic differentials on X. Here
there are no singularities.

2.1. Existence of twistor spaces

Does every system of ODEs of the form (2) have a twistor space? Since the restriction
of θ to X cannot vanish, a necessary condition is that α �= 0 at every point of X. This
condition holds in the generic case (since it fails only if the all the entries in the matrix A
have a coincident zero). It is also sufficient.

Proposition 1. Let α be a meromorphic g-valued 1-form on X with no zeros. Then the linear
system of ODEs dy + αy = 0 has a twistor space.

Proof. We construct Z by taking a quotient of a neighbourhood of the identity section X
in X ×G by a distribution F constructed from the linear system.

Let D be a neighbourhood of a pole a not containing any of the other poles, and let z be
a coordinate on D such that z = 0 at a. Then α = −A dz in D, where A : D \ {0} → g is
holomorphic and has a pole of order r + 1 at z = 0.

Define F to be the distribution on D ×G tangent to the non-vanishing vector field

zr+1(∂z − RA),

where RA is the right-invariant vector field onG generated byA(z). IfD′ is an open set not
containing any other poles, then we define F in the same way on D′ ×G, but without the
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factor zr+1; i.e., F is tangent to ∂z − RA. The vector fields are proportional on D ∩D′, so
F is well defined globally as a distribution on X ×G. Under the condition on α, we have
F ∩ TxX = 0 at every x ∈ X. So it is possible to choose an open neighbourhood N of X
in X × G such that the quotient Z = N/F is a Hausdorff complex manifold of the same
dimension as G. We then have a double fibration

and a smooth curve π2(X) ⊂ Z , which we also denote by X.
Because we are looking only at a neighbourhood of the identity section, the right action

of G on X × G does not pass to Z; but the corresponding Lie algebra action does. Each
v ∈ g can be identified with a left-invariant vector field onG, and hence with a vector field
on X ×G tangent to the fibres of π1. Its projection V by π2∗ is a holomorphic vector field
on Z , and the map v �→ V is a Lie algebra representation, satisfying the conditions in the
definition of a twistor space. The singular hypersurface has components given by the poles
of α, and X meets these transversally.

It remains to show that θ |X = α. To do this, we note that the meromorphic vector field
∂z − RA on CP1 × G is tangent to F , and so its projection into Z vanishes. On the other
hand, at the identity, the right- and left-invariant vector fields generated by an element of g
coincide. Hence i∂zθ = −A. The proposition follows. �

Remark. If we instead take the curve in Z to be the projection under π2 of X × {g} for
some other constant element of g, then we obtain instead a twistor space for g−1αg.

In the irregular case, the twistor space is not unique: the one that arises in Proposition 1
is minimal in a sense that will be explained later.

2.2. Full twistor spaces

The difference in structure between different twistor spaces of a system of ODEs can
be understood by looking at the structure in a neighbourhood of a point of a ∈ S. By
introducing a local coordinate z that vanishes on S, we can choose a neighbourhood U of
the form S ×D, where D ⊂ C is, say, the unit disc, and X ∩ U is {(a, z)}, z ∈ D.

Suppose that α = −A dz has a pole of order r + 1 at z = 0. Then corresponding system

dy

dz
= Ay (4)

has a singularity of rank r at z = 0.
Given a holomorphic vector field V on Z tangent to S, we can construct a holomorphic

family of copiesDt ofD inU by movingD0 = X∩U along V (and if necessary restricting
to a smaller neighbourhood of a): here t is a complex parameter taking values in some
neighbourhood of t = 0. By restricting θ to each Xt , we get a one-parameter family of
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ODEs
dy

dz
= A(z, t)y,

each with a singularity of rank r at z = 0 (the singularity does not move with t because V
is tangent to S). It follows from the flatness of d + θ that

∂A

∂t
= ∂Ω

∂z
− [A,Ω],

where Ω = −iV θ . This is the local deformation equation (see appendix).
At each fixed value of t , Ω is a function of the coordinate z. Introducing the notation

∇Ω = ∂zΩ − [A,Ω],

we have

Ω = O(z−r−1), ∇Ω = O(z−r−1) as z → 0. (5)

When the singularity is irregular, the various twistor spaces differ in the extent to which
the converse holds: in the minimal construction, an Ω satisfying these conditions is of the
form iV θ for some holomorphic V only if Ω − f (z)A is holomorphic at z = 0 for some
holomorphic function f .

Definition 2. A twistor spaceZ is full at a ∈ S if for everyΩ : D → g such that (5) holds,
there is a holomorphic vector field V on U ⊂ Z such thatΩ = −iV θ |X. The twistor space
is full if it is full at every point of S.

When the system has irregular singularities, and Rank(G) > 2, the twistor space con-
structed in Proposition 1 is not full. We can see this by noting that, for any holomorphic
V , iV θ has singular part at each pole that is proportional (by a holomorphic function) to
a multiple of A, and cannot, therefore, give rise to the most general Ω satisfying (5). We
shall put this more precisely below when we consider the normal bundle of X in Z .

A full twistor space generates not only the ODE itself, but also its isomonodromic defor-
mations. We shall see that it is possible to construct a full twistor space in the generic case,
but there are some rather special exceptions. A necessary condition for existence is that if
Ω and Ω ′ both satisfy (5), and if

Ω = M

zr+1
+ O(z−r ), Ω ′ = M ′

zr+1
+ O(z−r )

as z → 0, with k > 0, then [M,M ′] = 0. This fails in the following class of examples.

Example. Suppose that

A = z−2
(

1 0
0 1

)
.

Then

Ω = M

z
, Ω ′ = M ′

z
,
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satisfy (5) for any constant M , M ′; but both cannot be generated from vector fields in the
same twistor space if [M,M ′] �= 0.

2.3. The singular hypersurface

We now look in detail at the structure of a twistor space in a neighbourhood of S. The
fullness condition at a point ofX∩S is this: givenΩ such that (5) holds, isφ(Ω)holomorphic
at z = 0? Let us write

A = p

zr+1
+H, Ω = ω

zr+1
, (6)

where

p = p0 + p1z+ · · · + prz
r , ω =

∞∑
0

ωiz
i,

and H is holomorphic on U . If ω = O(zr+1) as z → 0, then Ω is holomorphic at z = 0
and can be generated by the holomorphic vector field φ(Ω) in any twistor space for A; so
the source of any difficulty lies in the first r terms in the Taylor expansion of ω.

When we separate out the coefficients of z−2(r+1), z−2r−1, . . . z−(r+2) in (5), we obtain
for r > 0

[p0, ω0] = 0,

[p0, ω1] + [p1, ω0] = 0, . . . , [p0, ωr−1] + [p1, ωr−2] + · · · + [pr−1, ω0] = 0,

[p0, ωr ] + [p1, ωr−1] + · · · + [pr, ω0] − (r + 1)ω0 = 0,

or in the case r = 0,

[p0, ω0] = ω0. (7)

The generic case is that one or other of the following hold:

1. r > 0 and the eigenvalues of p0 are distinct; or
2. r = 0, the eigenvalues of p0 are distinct, and no pair differ by an integer. 2

Lemma 1. If A is generic, thenΩ satisfies (5) if and only if ω0 = 0 and [ω, p] = O(zr+1)

as z → 0.

Proof. Under either of the conditions 1, 2, the eigenvalues of p can be assumed to be
distinct, since they are distinct at z = 0 and since we can, if necessary, replace U by a
smaller neighbourhood. So we can find a holomorphic gauge transformation g : U → G

such that g−1pg is the sum of a diagonal polynomial and a term that vanishes to order zr+1

at z = 0, and so can be absorbed into r .

2 To prove Lemma 1 and Proposition 2, we only need that no pair should differ by 1; however, the stronger condition
here is needed to construct gf (see appendix), and is imposed here to avoid special cases in the presentation below.
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If we assume first thatp is actually diagonal, then we deduce successively thatω0, . . . , ωr−1

are diagonal (for r > 0) and that

[p0, ωr ] = (r + 1)ω0.

For r > 0, this implies thatω0 = 0 since the diagonal terms on the left-hand side vanish, and
hence thatωr is also diagonal. For r = 0, it givesω0 = 0 since p0 has no pair of eigenvalues
differing by 1. Thus, whether or not p is diagonal, we have thatΩ is holomorphic at z = 0
when r = 0; and that when r > 0,

Ω = gqg−1

zr
+ O(z0),

where q is a diagonal polynomial of degree r − 1. �

Proposition 2. Let dy+αy = 0 be a generic system withG = SL(n,C). Then there exists
a full twistor space.

Proof. Any twistor space is full at a singularity of rank r = 0 since any Ω satisfying (5)
is then holomorphic at z = 0, and can, therefore, be generated by a holomorphic vector
field in any twistor space. In the irregular case, we construct Z from the ‘minimal’ twistor
space in Proposition 1, by cutting out and replacing a neighbourhood of each component
of S corresponding to an irregular singularity.

Suppose, to begin with, that the system has a singularity of rank r at z = 0 and that in a
neighbourhood D of z = 0 we have α = −A dz, where

A = p

zr+1
+H (8)

with p a diagonal polynomial of degree r with distinct diagonal entries throughout D and
H holomorphic. By making a diagonal gauge transformation, we can makeH off-diagonal.

Pick constant diagonal matrices q1, . . . , qn−2 which, together with p(0), form a basis for
the diagonal subalgebra of g, and for each i let Hi be the off-diagonal matrix with entries

(Hi)ab = zHab(qia − qib)

pa − pb
, a �= b,

where qia and pa , a = 1, . . . , n, are the diagonal entries in qi and p. Thus

[p,Hi] = [qi, zH], [qi,Hj ] = [qj ,Hi]. (9)

Now introduce evolution equations for the diagonal matrix p(z) and the off-diagonal matrix
H(z) as functions of the complex variables t1, . . . , tn−1 by putting

∂ip = −rqi , ∂iH = ∂zHi − [H,Hi],

where ∂i = ∂/∂ti , ∂z = ∂/∂z. The integrability of this system is established by showing
that

∂iHj − ∂jHi = [Hi,Hj ].
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Since both sides are off-diagonal, this follows from (9) and

[p, ∂iHj ] − [p, ∂jHi] = z[qj , ∂iH ] − z[qi, ∂jH ]

= z[qj , ∂zHi]−z[qi, ∂zHj ] − z[qj , [H,Hi]] + z[qi, [H,Hj ]]

= z[Hi, [qj ,H ]] − z[Hj , [qi,H ]] = [p, [Hi,Hj ]].

So the evolution equations extend H and p to functions of (z, t1, . . . tn−2) on a neighbour-
hood W of the origin in Cn−2.

It follows from the definitions that

∇ = d − p dz

zr+1
−H dz−

∑
i

(
qi dti
zr

+Hi dti

)

is flat meromorphic connection on the trivial bundle principal bundle P = G×W .
LetQ denote the quotient of a neighbourhood of the identity section inP by the horizontal

foliation. The foliation extends holomorphically to z = 0 since it is spanned by

zr+1∂z − p − zr+1H, zr∂i − qi − zrHi (i = 1, . . . , n− 2),

where p, qi,H,Hi are interpreted as right-invariant vector fields on G.
The quotient is a ‘local twistor space’ for A in the sense that it carries a holomorphic
g-action, which is free and transitive except on the hypersurface S′ = {z = 0}, and contains
a copy of D on which the induced system is α. Moreover, the fullness condition holds at S
since p0 and the qis span the diagonal subalgebra (in the case n = 2, p0 on its own does
that). Any genericA can be reduced to the form (8) by a holomorphic gauge transformation
g(z); so more generally a local twistor space can be constructed by applying the same gauge
transformation to ∇.

By using the g action, we can identify Q \ S′ with V \ S, where V is a neighbourhood
in Z of the z = 0 intersection point of S and X. Then the embedded copy of D \ {0} is
mapped onto a punctured neighbourhood of the singularity in X. The identification allows
us to replace V byQ. By repeating this for the other irregular singularities, we obtain a full
twistor space. �

Given the choice of coordinate z in a neighbourhood of an irregular singularity, p0 is a
well-defined map S → g. Up to scale, p0 is independent of the choice of z. We thus have
a natural map [p0] : S → Pg. It is equivariant with respect to the g action on S and the
adjoint action on Pg. The following is immediate from the proof above.

Proposition 3. A twistor space for a generic system is full at an irregular singularity if and
only if [p0] : S → Pg is regular at X ∩ S.

When the space is not full, [p0](S) has non-zero codimension in P(g). In the generic case,
the full twistor space is locally unique in the sense of the following proposition.

Proposition 4. Suppose that (Z, X) and (Z ′, X) are full twistor spaces for a generic linear
system of ODEs on a Riemann surface X withG = SL(n,C). Then there are neighbourhoods
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U ⊃ X and U ′ ⊃ X in Z and Z ′ and a g-equivariant biholomorphic map ρ : U → U ′

such that ρ(X) = X.

If we exclude the poles from X and the corresponding hypersurfaces S and S′ from Z
and Z ′, then ρ is determined in a straightforward way by the g actions on Z and Z ′. It is
defined by choosing a (multi-valued) solution y to the system onX and then extending y to
a (multi-valued) map from a neighbourhood of X \ S in Z \ S toG such that dy + θy = 0.
Similarly, y extends to y′ onZ ′. Then the required map is ρ = y′−1 ◦y, where the branches
are chosen so that ρ is the identity on X (ρ is well defined since y and y′ have the same
holonomy). The fact that ρ extends holomorphically to S in the full case is a corollary of
Proposition 6 below.

2.4. The structure of S

Suppose that G = SL(n,C) and that (Z, X) is full. We denote by Γ the space of
parametrised curves

D → Z : z �→ γ (z),

where D ⊂ C is the unit disc, γ (D) meets some component of S transversally at z = 0,
and γ extends smoothly to |z| = 1.

We shall now develop a picture in which θγ = γ ∗(θ) is regarded as an element of the
dual of Lie algebra of the loop group LG. 3 Different elements of Γ give different points of
an orbit in Lg∗ of an affine action of LG. We shall construct a finite-dimensional complex
symplectic manifold from the orbit which determines the singular part of α at z = 0.

2.5. The Fuchsian case

If the singularity at z = 0 is regular and generic, then any twistor space is full at z = 0 and
any holomorphic map z → Ω(z) ∈ g generates a local holomorphic vector field tangent Y
to S. Moreover, we can write

θ = p0 d(log z)+ θ ′,

where z = 0 on S and θ ′ is holomorphic on S. 4 Then p0 is independent of the choice of the
function z, and therefore determines a natural map µ : S → g = g∗ — the identification
being given by the bilinear form tr(ξ1, ξ2), ξi ∈ g. The image µ(S) is open subset of a
coadjoint orbit.

By evaluating Ω and Y at z = 0, we obtain a natural identification

TaS = g/[p0(a)], a ∈ S.
3 An element of loop algebra is a map B : S1 → g. We define 〈θγ , B〉 by integrating tr(Bθγ ) around the unit

circle.
4 Thus θ has a logarithmic pole in the sense of Malgrange [13].
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We can, therefore, define a 2-form σ on S by

σa(Y, Y
′) = tr(p0[Ω,Ω ′]).

This is closed and presymplectic since it is the pull back to S by µ of the symplectic form
on µ(S).

2.6. The irregular case

In the irregular case, the analogous structure involves information from the higher formal
neighbourhoods of S. It arises from the action on Γ of the group L+G of holomorphic
maps g : D → G that extend smoothly to D̄: if g ∈ L+G then γ ∈ Γ , then (gγ )(z) =
γ (z)g(z). 5

A tangent vector Y to Γ at [γ ] is a section of TZ|γ , tangent to S at z = 0. Put

σγ (Y, Y
′) = 1

2π i

∮
tr(Ω∇Ω ′), (10)

whereΩ = iY θ ,Ω ′ = iY ′θ , ∇Ω = dΩ+[θ,Ω] and the integral is along a loop surrounding
z = 0. This form is closed, but degenerate (its closure follows from the construction below).
Its characteristic distribution is integrable, by closure, and contains the Y s for which Ω =
O(zr+1) as z → 0. These span the orbits of the normal subgroup Lr+1G ⊂ L+G of maps
g : D → G such that g = 1 + O(zr+1) as z → 0. Since Γ/Lr+1G is finite-dimensional,
the quotient Γr of Γ by the characteristic distribution is a finite-dimensional symplectic
manifold.

Since Z is full, the tangent space to Γr at [γ ] is the set of holomorphic maps

Ω : D \ {0} → g,

such that (5) holds, modulo maps with zeros of order r at z = 0.

2.7. Affine orbits

Let LG denote the loop group of smooth maps S1 → G [15]. Its Lie algebra is the space
Lg of smooth maps Ω : S1 → g.

A 1-form α on S1 with values in g determines an element of Lg∗ by

〈α,Ω〉 = 1

2π i

∮
tr(Ωα).

LetAr ⊂ Lg∗ denote the subspace of smooth αs that extend meromorphically to D with a
pole at the origin of order at most r + 1, and no other poles. Thus

Lg∗ ⊃ Ar ⊃ Ar−1 ⊃ · · · ⊃ A0.

Like any dual Lie algebra (Lg)∗ carries the standard Kostant–Kirillov–Souriau Poisson
structure, which is preserved by the coadjoint action of LG. The natural symplectic arena

5 Of course this is well-defined only for g close to the identity; what follows has to be qualified in a similar way.
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for the isomonodromy problem is not, however, that of the corresponding coadjoint orbits,
but rather that of the orbits of the affine action of Lg on Lg∗ given by the cocycle

c(Ω,Ω ′) = 1

2π i

∮
tr(Ω dΩ ′).

Each Ω ∈ Lg determines a vector field on Lg∗, its value at A ∈ Lg∗ being given by

〈δα, ·〉 = 〈α, [Ω, ·]〉 − c(Ω, ·).
The first term on the right-hand side is the usual coadjoint action; the second is a translation
introduced by Souriau [19] (see also [20]). 6 By integrating the flow on Lg∗, we obtain the
gauge action of LG:

α �→ g−1αg + g−1 dg.

The symplectic structure on the corresponding orbits is 7

σ(Y, Y ′) = c(Ω,Ω ′)− 〈α, [Ω,Ω ′]〉 = 1

2π i

∮
tr(Ω∇Ω ′) = 1

2π i

∮
tr(Ωδ′α), (11)

where Y, Y ′ are the vector fields generating the actions of Ω,Ω ′ ∈ Lg,
∇Ω = dΩ + [α,Ω],

and δ′α is the variation induced by Y ′. The flow of Ω ∈ Lg is generated by

h(α) = 1

2π i

∮
tr(αΩ).

However, [hA, hB ] = h[A,B] + c(A,B), so the action is not Hamiltonian: the cocycle is the
obstruction to the existence of a moment map.

2.8. The symplectic structure of Mr

Let O be the affine orbit of some generic element of Ar ; i.e., an element of the form

g−1 dg − g−1
(
p

zr+1
+H

)
g,

where g ∈ L+G,H ∈ L+g are holomorphic onD, and p is a polynomial in z with distinct
eigenvalues for z ∈ D.

6 For a general Lie group, the affine action is symplectic, but not Hamiltonian when c is not a coboundary. In
fact the affine orbits are the models for the non-Hamiltonian transitive symplectic actions of the group in the same
way that the coadjoint orbits are the models for the Hamiltonian actions. If c is the obstruction to the existence
of a moment map for some transitive symplectic action of the Lie algebra on a symplectic manifold M , then M
can be mapped equivariantly and symplectically to an affine orbit in the dual Lie algebra. The affine orbits have
an alternative description in terms of the coadjoint orbits of the central extension determined by c, but this is less
convenient for our purposes here, see [15, p. 44].

7 This is a good definition of σ since the right-hand side vanishes whenever Ω1 fixes A, and therefore whenever
Y1 vanishes at A. We shall not need to consider the precise sense in which σ is non-degenerate, since we shall
deal only with finite-dimensional submanifolds.
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A general element α ∈ O is a smooth 1-form on S1 with values in g. For any α, α′ ∈ O,
the two systems

dy + αy = 0, dy + α′y = 0

on the circle have the same monodromy matrixM up to conjugacy, since that is the condition
that y and ŷ can be chosen so that g = y(z)ŷ(z)−1 is single-valued; g is then the element
of LG that maps one system into the other.

Since c vanishes onL+g, the action of LG onO is Hamiltonian when restricted toLr+1G,
the subgroup of loops of the form 1 + zr+1h, where h is holomorphic. We denote byMr

the Marsden–Weinstein reduction of µ−1
r+1(0), where µr+1 is the moment map. That is,

Mr is the quotient of Ar ∩O(A) by the action of Lr+1G. It a finite-dimensional complex
symplectic manifold, with symplectic form that we shall again denote by σ . Its points are
elements of Ar ∩O(A), modulo gauge transformations of the form

α �→ g−1 dg − g−1αg, g ∈ Lr+1G.

A tangent vector Y ∈ TαMr is of the form

δα = ∇Ω = dΩ + [α,Ω],

whereΩ satisfies (5); two suchΩs define the same tangent vector whenever their difference
is in Lr+1g.

We can construct from α ∈ Ar the following objects (see appendix).

1. The singularity data (m, t), where t is a diagonal polynomial of degree r − 1 and m is
the exponent of formal monodromy.

2. The formal series gf = ∑
giz

i .
3. The matricesCi , defined as follows. For each α, choose a solution y to the corresponding

system with fixed monodromy matrixM and choose 2r sectors Si at z = 0, as in (A.3).
Then put Ci = yi(z)

−1y(z), where yi is the corresponding special solution and we
continue y in the positive sense around z = 0 into the sector Si . If we put

y2r+1 = y1 e2π im, S2r+1 = S1,

then C2r+1 = e−2π imC1M and we can define the Stokes’ matrices by Si = CiC
−1
i+1(i =

1, . . . 2r).

These are not quite uniquely determined: we are free to make the replacement

gf �→ gfT , Ci �→ T −1Ci, Si �→ T −1SiT , (12)

where T is diagonal and independent of z. We shall express the symplectic form onMr in
terms of these variables.

Given t and the monodromy matrix M , the Stokes’ matrices and the exponent of formal
monodromy satisfy two constraints.

(C1) Let Pi be the matrix of the permutation that puts the real parts of diagonal entries in
z−r t is increasing order in Si ∩ Si+1. Then for each i, P−1

i SiPi is upper triangular and
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PiSi+1P
−1
i is lower triangular, both with ones on the diagonal. This follows from the

fact that

exp(z−r t +m log z)Si exp(−z−r t −m log z) → 1 (13)

faster than any power of z as z → 0 in Si ∩ Si+1.
(C2) The product e−2π im S1 · · · S2r is conjugate to M−1.

Denote by Cr the set matrices Si ∈ SL(n,C),m diagonal and trace-free, satisfying these
two constraints. Given a point Cr , we choose C1 such that

e−2π imS1 · · · S2r = C1M
−1C−1

1 ,

and define C2, . . . , C2r+1 by Ci+1 = S−1
i Ci . Put

ω = 1

2π i

2r∑
1

tr(dCi C
−1
i ⊗ dSi S

−1
i )+ π i tr(dm⊗ dm)− tr(dC1 C

−1
1 ⊗ dm). (14)

It is shown in the appendix that ω is skew-symmetric, and in fact a symplectic form on Cr .
For each point ofMr , we pick a representative in α ∈ Ar . We then define 1-forms on

Mr by

Θ = dg g−1 + g dt g−1

zr
, γ = g−1

0 dg0,

where d is the exterior derivative onMr and g is the polynomial obtained by truncating the
formal power series gf at some large power of r . With this notation, the symplectic form
onMr is given by the following proposition.

Proposition 5. The symplectic form onMr is

σ = 1

2π i

∮
tr(Θ ∧ ∇Θ ′)+ tr(γ ∧ dm)− ω,

where ∇Ω = ∂zΩ dz+ [α,Ω].

The proof is by splitting the integral in the definition of σ into sections lying in the various
sectors, and then shrinking the contour to zero. The details are given in the appendix.

The formula for σ is independent of the choices made in defining the variables onMr . In
particular, it depends on the first r terms in the formal series since the right-hand side of the
formula is unchanged whenΘ is replaced by dhh−1+hΘh−1, where h = 1+O(zr+1). It is
also unchanged when g,Ci are replaced by gT, T −1Ci , where T is diagonal and independent
of z.

We can see the local structure ofMr from the proposition. The submanifolds on which
g and t are constant (up to the freedom 12) are symplectomorphic to Cr . While, those on
which m and Si are constant (up to 12) are symplectomorphic to a fixed manifold Pr ; by
mapping [γ ] ∈ Γr to [α], where α = γ ∗(θ), and by noting the coincidence of the formulas
for the symplectic forms, we identify Pr with Γr .
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3. Local uniqueness of the full twistor space

Let P denote the subset of O ∩ Ar given by fixing the values of the Stokes’ matrices
and exponent of formal monodromy. By using the actions of Lr+1G on Γ and P to pick
representatives in [γ ] and [α], we can identify Γ with an open neighbourhood in P so that
γ ∈ Γ corresponds to α ∈ P such at α = γ ∗(θ). We then deduce the following proposition.

Proposition 6. Suppose that (Z, X) and (Z ′, X) are full twistor spaces for a generic linear
system of ODEs on a Riemann surface X withG = SL(n,C). Let a ∈ X be a pole of order
r + 1 > 1. Then there are neighbourhoods U,U ′ of a in Z and Z ′ and a g-equivariant
biholomorphic map ρ : U → U ′ such that ρ(a) = a and ρ(X ∩ U) = X ∩ U ′.

Proof. Choose a coordinate z on a small disc inX such that the pole is at z = 0, and extend
this to a neighbourhood of a in Z so that S is given by z = 0. Then we can identify a
neighbourhood of a with S × D, as before. For each s ∈ S, we have a holomorphic map
γs : D → Z and hence an element αs of P such that γ ∗

s = αs . Let γ ′
s : D → Z ′ be the

corresponding map into the second twistor space. Then the required biholomorphic map is
ρ : (s, z) �→ γ ′

s (z). �

Proposition 4 above is an immediate corollary, since Proposition 6 implies that the map
ρ constructed there extends to S.

4. Isomonodromic deformations

We have shown that a generic SL(n,C) system of the form (2) on a Riemann surface
can be generated from a twistor space (Z, X), and that, if we require Z to be full, then
it is unique, at least in a neighbourhood of X. In the case of Fuchsian equations on CP1,
Hitchin [5] showed that the isomonodromic deformations of the system are given by the
deformations of X in Z (every twistor space being full in the Fuchsian case). This is also
true more generally, as we shall now see.

By Kodaira’s theorem, the deformations of a compact curve X ⊂ Z are determined by
the properties of the normal bundle N = TZ|X/TX. Put

d1 = dimH 1(X,N) and d0 = dimH 0(X,N).

When d1 = 0, the theorem implies that X is one of a complete d0-parameter holomorphic
family of embedded curves. The tangent space to the parameter space at X is naturally
identified with H 0(X,N) [12].

For each curve X in the family, we have a meromorphic 1-form θ |X and hence a system
of differential equations of the form (2). As we vary the curve along a pathXt in the family,
t ∈ [0, 1], the tangent at t is an element of H 0(Xt , N). This we represent by local sections
Yi of TZ|Xt , chosen to be tangent to S at the poles. Thus the Yis are uniquely determined
up to the addition local tangent vector fields to Xt that vanish at S ∩ Xt . Put Ωi = iYi θ ,
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αt = θ |Xt , and identify local neighbourhoods in theXt s along Yi . ThenΩi is meromorphic,
with a pole of order r at a singularity of rank r . By (3),

∂tαt = ∇αtΩi = dΩi + [αt ,Ωi].

Moreover, on the overlap of their domains,Ωi −Ωj = iTijαt dz for some tangent vector Tij

to X, which must vanish at any poles in the overlap. By using the results in the appendix,
we deduce the following proposition.

Proposition 7. LetG = SL(n,C), let (Z, X)be a twistor space, and letX′ be a deformation
of X. Then the linear system of ordinary differential equations on X′ is an isomonodromic
deformation of the linear system on X.

4.1. The minimal twistor space

In the minimal case, we can find the normal bundle of X as follows. For x ∈ X, put
Lα(x) = α(TxX) ⊂ g when x is not a pole; and

Lα(x) = zr+1α(TxX),

when x is a pole of rank r and z = 0 at x. Then LA → X0 is a holomorphic line bundle.
Moreover, α is a global meromorphic section of Lα ⊗ K with a pole of order r + 1 at a
singularity of rank r and, by assumption, no zeros. Therefore

Lα ⊗K = −
∑

(ri + 1)aα,

and so degLα = 2 − 2g − ∑
(ri + 1), where the sum is over the singularities and g is the

genus.
Now a point x ∈ X is the image of (x, e) ∈ X×G under the projection along F . So we

have

Nx = T(x,e)(X ×G)/(Tx ⊕ Lα).

Thus there is a short exact sequence

0 → LA → g→ N → 0,

where g is the trivial bundle g-bundle over X.
When X = CP1 and

∑
(ri + 1) ≥ 4, we have H 1(g) = 0, H 0(LA) = 0, and

dimH 1(LA) = −3 +
∑

(ri + 1).

From the corresponding long exact sequence, therefore, H 1(N) = 0, and

0 → H 0(g) → H 0(N) → H 1(LA) → 0.

It follows that

d1 = 0, d0 =
∑

(ri + 1)− 3 + dimG.
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We conclude that X is one of a d0-parameter of embedded copies of CP1. If all the sin-
gularities are regular, then d0 is the dimension of the space of configurations of poles
(
∑
(ri + 1)− 3), plus the dimension of G. The deformations of X are parametrised by the

positions of the poles, modulo the action of SL(2,C) onCP1, together with constant gauge
transformations.

Example (The Schlesinger equations). Suppose thatX = CP1 and that all the singularities
are regular. We choose the domains of theΩis so that each pole lies in only one. TheΩis are
holomorphic and the deformation is determined by the holomorphic tangent vector fields
Tij on the overlaps of the domains. SinceH 1(X,TX) = 0, we have Tij = Ti − Tj , where Ti
is holomorphic on the domain of Ωi (but possibly non-zero at the corresponding pole). So
if we put Y = Yi + Ti , then Y is a global section of TZ|X.

Let z be a global stereographic coordinate on X, with z = ∞ not one of the poles, and
use Y to transfer z along the deformations of X. Then

α = −
∑ Ai dz

z− ai
,

where the ais are positions of the poles and the coefficients Ai are independent of z and
satisfy∑

i

Ai = 0

(since there is no pole at infinity). PutΩ = iY θ . ThenΩ is meromorphic with simple poles
at the ais and

∂A

∂t
= ∂Ω

∂z
− [A,Ω].

In fact, since Ωi is holomorphic at ai and Ti(ai) = ∂ai/∂t , we have

Ω = −∂ai
∂t

Ai

z− ai
+ O((z− ai)

0).

It follows that

Ω = −
∑
i

∂ai

∂t

Ai

z− ai
+ k,

where k is a matrix independent of z. Therefore

∂Ai

∂t
= −

∑
j �=i

∂ai

∂t

[Ai,Aj ]

ai − aj
+ [k,Ai],

which is a form of the Schlesinger equations. The last term is simply a infinitesimal
gauge transformation; the first gives the dependence of the Ais on the configuration of the
poles.
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4.2. The full case

In a full twistor space, d0 is generally larger than in the minimal construction. Here we
can find N in another way.

We suppose that all the singularities are generic. Then, by (5) and Lemma 1, a local
section V of TZ|X is a map Ω from a neighbourhood in X to g such that a singularity at
of rank r ,

Ω = O(z−r ), [α,Ω] = O(z−r−1),

where z is a local coordinate that vanishes at the singularity. That is, in a local gauge in which
the singular part of α is diagonal, the diagonal entries in Ω have poles of at most order r ,
and the off-diagonal entries are holomorphic. Thus these algebraic conditions characterise
Ω as a local section of a holomorphic bundle E → X with fibre g (and therefore rank
n2 − 1) and degree

∑
(n− 1)ri . In the full case, therefore, we have that TZ|X = E can be

constructed directly from the positions and ranks of the singularities of the ODE on X. Put

L = TX ⊗
∑

(−ai),
so that a local holomorphic section of L is a tangent vector field that vanishes at the poles.
Then we have a short exact sequence

0 → L → E → N → 0

with the second map given by contraction with α. Hence there is an exact sequence

0 → H 0(L) → H 0(E) → H 0(N) → H 1(L) → H 1(E) → H 1(N) → 0.

If the genus of X is g, and if there are k singularities in total, then

deg(L) = 2 − 2g−k, dimH 0(E)−dimH 1(E) = (n2−1)(1 − g)+ (n− 1)
∑

ri

(the latter identity coming from the Riemann–Roch theorem).
A global section of E is a meromorphic map Ω : X → g such that at a singularity of

rank r ,

Ω = z−rgf qg−1
f + O(z0),

where z is a local coordinate that vanishes at the singularity and q is a diagonal polynomial
of degree r − 1. When X = CP1,Ω is determined as a global rational map by the qs up to
the addition of a constant element of g, and the qs can be specified independently. In this
case, therefore, dimH 0(E) = (n − 1)

∑
ri + dimG, and dimH 1(E) = 0. Moreover if

k ≥ 4, then

dimH 0(L) = 0, dimH 1(L) = k − 3.

It follows that

d0 = H 0(N) = (n− 1)
∑

ri + dimG+ k − 3, d1 = dimH 1(N) = 0.
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If either n = 2 (G = SL(2,C)) or
∑
ri = 0 (all singularities regular), then d0 is the same

as in the minimal case; in either of these cases, the minimal twistor space is full and, by
Proposition 8 below, it gives all possible isomonodromic deformations. In general, however,
there are more isomonodromic deformations than are given by the minimal construction:
the additional parameters are the coefficients of the diagonal polynomials t (of degree r−1)
at the irregular singularities (r ≥ 1).

WhenX has higher genus, dimH 1(E) = dimH 0(E∗⊗K)∗ is generically zero, whenever
(n− 1)

∑
ri > n2g + g − 2.

4.3. Twistor curves

Let dy+αy = 0 be a generic system on a compact Riemann surfaceX and suppose that
H 1(E) = 0. Then we can construct a full twistor space (Z, X). SinceH 1(X,N) = 0,X is
one of a complete holomorphic family K of curves X ⊂ Z .

Proposition 8. Let (Xt , αt ), t ∈ [0, 1], be an isomonodromic deformation of (X, α). Then
for small t, there is a path Xt in K such that αt = θ |Xt .

Proof. Let yt be solution to

dyt + θtyt = 0

with constant monodromy, and with constant connection matricesCi to the special solutions
at the poles.

Let z, z′ ∈ X be nearby points (neither a pole) and let g, g′ ∈ G be close to the identity.
Then, by integrating the action of g on Z , we have two points zg, z′g′ in Z near X. These
are the same if

gg′−1 = y0(z)y0(z
′)−1. (15)

Let zt ∈ Xt vary continuously with t , and suppose that zt is not a pole for any small t . Put

ρt (zt ) = z0y0(z0)yt (zt )
−1 ∈ Z (16)

(the right-hand side is interpreted by regarding z0 ∈ X as a point ofX ⊂ Z and by using the
local action of G on Z). This is independent of the choice of branch of yt and y0 (so long
as we make the choice of branch continuously) since y0 and yt have the same monodromy.
Moreover, ρt (zt ) depends only on zt , and not on the path, by (15). So if we exclude a small
neighbourhood of each pole inXt , then we can embed the complement inZ by zt �→ ρt (zt ).
By fixing z0 and moving zt , we see from (16) that ρ∗

t θ = αt .
It remains to show that ρt extends holomorphically to the poles. Consider one of the

poles (a point of Xt , varying continuously with t). We can choose a coordinate z in a
neighbourhood D of the pole on each Xt so that D is the unit disc and the pole is at z = 0.
Then, for small t , since Z is full, there exists a holomorphic map γt : D → Z such that
α′
t = γ ∗

t θ has the same singularity data at z = 0 as αt has at z = 0. Since αt is an
isomonodromic deformation, αt and α′

t also have the same Stokes’ matrices.
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Let y′
t be a solution to

dy′
t + α′

t = 0

with the same monodromy and connection matrices to the special solutions in the sectors
at z = 0 as y0. Then

γt (z) = zy0(z)y
′
t (z)

−1.

Further y′
t y

−1
t is holomorphic at z = 0. This is because it is single-valued, since yt and y′

t

have the same holonomy, and bounded since in any sector S at z = 0

y′
t y

−1
t = y′

Sy
−1
S ∼ g′

fg
−1
f ,

where y′
S , yS are the corresponding special solutions and g′

f , gf are the formal gauge
transformations to diagonal form. So the embedding ρt extends by mapping z ∈ D ⊂ Xt

to γt (z)y′
t y

−1
t . �

4.4. Isomonodromic flows for systems on the Riemann sphere

The number of independent isomonodromic deformations (the dimension of K) of a
generic system on X = CP1,

dimH 0(X,N) = (n− 1)
∑

ri + dimG+ k − 3.

We shall now show that the deformations are given by Hamiltonian flows on symplectic
manifolds constructed from the affine orbits in Lg∗.

In this case, the twistor curves in Z are copies of CP1, and they can be parametrised by
a global stereographic coordinate z ∈ C∪ {∞}. We denote by K̂ the space of parametrised
curves, which has dimension

dim K̂ = (n− 1)
∑

ri + dimG+ k.

The points of K̂ can be labelled by the positions of the poles (k parameters), the polynomials
t at each pole ((n− 1)

∑
ri parameters) and a choice of gauge (dimG parameters).

An element of K̂ is a mapping ρ : CP1 → Z from some fixed copy of the Riemann
sphere. It determines a rational g-valued 1-form

α = ρ∗θ = −A dz,

where A is rational, with poles of order ri + 1 at k points a1, . . . , ak (we assume that none
of the poles is at infinity, so A = O(z−2) as z → ∞). In a neighbourhood of ai , we put
zi = z− ai and assume, without of loss of generality, that no other pole lies in the closure
of the discDi = {|zi | < 1}. Then αi = α|Di determines a point of the symplectic manifold
Mri . Thus we have a map

K̂→M =Mr1 ×Mr2 × · · · ×Mrk .

It is not surjective, since a given point of M is not, in general, given by the restrictions
of a global 1-form α. However, α is uniquely determined by the positions of its poles and
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by its image inM, since the difference between two αs with the same pole positions, and
determining the same point ofM, is a global holomorphic 1-form, and therefore vanishes.

Given [αi] ∈Mri and the points ai ∈ CP1, we put αi = −Ai dzi and denote byAi− and
Ai+ the negative and non-negative degree terms in the Laurent expansion of Ai in powers
of zi in a neighbourhood of ai . Given also a diagonal polynomial qi of degree ri − 1, we
put

Ωqi = (z−ri g−1
f qigf)−,

where gf is the formal gauge transformation to the diagonal form of αi and again the minus
subscript denotes the negative terms in the Laurent expansion in powers of zi . Then Ai−
and Ωqi are global meromorphic functions on CP1 with values in g; they are holomorphic
except at ai , where they have poles of order ri + 1 and ri , respectively. Moreover, Ai− and
Ωi are independent of the choice of representative in [αi].

Proposition 9. The isomonodromic deformations of a generic SL(n,C) system onCP1 are
generated by the Hamiltonians

hv=
∑
j

1

2π i

∮
tr(αj v), hi=

∑
j �=i

1

2π i

∮
tr(αjAi−), hqi =

∑
j

1

2π i

∮
tr(αjΩqi )

on M, where v is a constant element of g and the integrals are around small circles
surrounding the poles.

The hi’s are time-dependent Hamiltonians, the ‘times’ being the positions ai of the poles.

Proof. First we note that the Hamiltonians hv generate the constant gauge transformations.
Consider next the flow generated by hi . We shall find the value of the Hamiltonian vector
field at a point ofM constructed from a global meromorphic 1-form α. To do this, we must
evaluate the gradient of hi at such a point. We have

δhi=
∑
j �=i

1

2π i

∮
tr(δαjAi−+αδAi−)=− 1

2π i

∮
tr(αiδAi−)+

∑
j �=i

1

2π i

∮
tr(δαjAi−).

However

1

2π i

∮
tr(αiδAi−) = 1

2π i

∮
tr(αi+δAi) = 1

2π i

∮
tr(Ai+δαi).

We conclude that the value of the Hamiltonian vector field at such a point is

δαi = −∇Ai+, δαj = ∇Ai−, j �= i.

The claim is that this is tangent to an isomonodromic deformation. To see this, let y be a
solution to dy + αy = 0, let D be a disc containing ai , but no other pole, and let D′ be
a second disc not containing ai such that D,D′ is an open cover of CP1. For small t , put
Ft(z) = y(z− t)y(z)−1. Then F : D ∩D′ → G is single-valued, holomorphic, and equal
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to the identity when t = 0. By Birkhoff’s theorem, Ft = h−1
t h′

t for some holomorphic
maps ht : D → G, h′

t : D′ → G, with h′
t (∞) = 1. Put

yt (z) =
{
ht (z)y(z− t), z ∈ D,
h′
t (z)y(t), z ∈ D′,

and αt = −dyt y
−1
t . Then the definitions agree on D ∩D′ and αt is a global meromorphic

1-form with poles at z = aj (j �= i) and z = ai + t . Moreover, ∂tyt = Ωtyt , where

Ωt =
{
∂thth

−1
t − htAi(z− t)h−1

t in D,

∂th
′
t h

′−1
t in D′.

Since ht and h′
t are holomorphic in D and D′, it follows that the deformation is isomon-

odromic (see Proposition 11).
At t = 0, we have ht = h′

t = 1 and

∂th
′
t = Ai−, ∂tht = −Ai+,

we also have at t = 0 that δαi = ∇(∂tht ), δαj = ∇(∂th′
t ) for j �= i. So the tangent to the

deformation is the Hamiltonian vector field constructed above: these deformations move
the poles, but leave the singularity data unchanged.

Now consider the flow generated by hqi . Proceeding as before to calculate the value of
the Hamiltonian vector field at a point given by a global 1-form α, we have

δhqi =
∑
j

1

2π i

∮
tr(δαjΩqi + αj δΩqi ) =

∑
j

1

2π i

∮
tr(αj δΩqi ).

So in this case, the value of the Hamiltonian vector field is

δαi = ∇αΩqi ,
which is clearly isomonodromic. These deformations change the singularity data at ai ,
leaving the position of the poles unchanged. �

Remark. The Hamiltonians Hqi vanish on the orbit of a global 1-form α, while

hi = 1

τ

∂τ

∂ai
,

where τ is as in [9].

Example. In the case of a generic system with only regular singularities, M = M1 ×
· · ·×M1. The tangent space is spannedM1 is spanned by the generators of constant gauge
transformations. If we write

α = −A dz =
∑ Ai dz

z− ai
, αi = −Ai dzi

zi
,
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then we can identifyM (as a symplectic manifold) with the product of the coadjoint orbits
of the Ai in g∗. In this case,

Ai− = Ai

z− ai
,

there are no hqi s, while

hi =
∑
j �=i

tr(AiAj )

ai − aj
.
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Appendix A. Singularities of systems of ODEs

Let A be a meromorphic map from some neighbourhoodD of the origin in C into g (the
Lie algebra sl(n,C)) with a pole of order r + 1 at z = 0. Then the system

dy

dz
= Ay, (A.1)

has a singularity of Poincaré rank r at the origin. It is regular or Fuchsian if r = 0, and
irregular if r > 0. In this paper, y will always be a matrix fundamental solution — i.e., it
will take values in G.

A.1. Gauge and point transformations

When we regard the system as a connection on a vector bundle, we must allow gauge
transformations (changes of trivialisation) of the form

A �→ g−1Ag − g1 dg

dz
, ∇ �→ g−1 ◦ ∇ ◦ g, y �→ gy,

where g : X → G is holomorphic. When g is constant, A transforms by conjugation. We
also admit transformations of the coordinate z �→ ẑ, under which

A �→ Â = A
dz

dẑ
.

If this is to fix the singularity at the origin, then we must take ẑ(0) = 0.
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A.2. Generic irregular singularities

An irregular singularity of rank r is generic if the eigenvalues of

A−r−1 = zr+1A|z=0

are distinct. In this case, we can assume, without loss of generality, that the eigenvalues
of zr+1A are distinct throughout the neighbourhood. If we choose an ordering for the
eigenvalues, then we can find a holomorphic mapg : D → G such that zr+1g(z)A(z)g−1(z)

is holomorphic and diagonal, with the eigenvalues as diagonal entries.
It follows that we can find a holomorphic map D → G and a diagonal polynomial p(z)

of degree r such that

A− g(z)−1p(z)

zr+1
g(z)

is holomorphic at the origin. Therefore we have the normal form:

A ∼ d

(
t

zr

)
+ m dz

z
+ R(z), (A.2)

where ‘∼’ denotes gauge equivalence, t is a diagonal polynomial of degree r − 1, m is a
constant diagonal matrix called the exponent of formal monodromy, and the remainder R is
holomorphic at z = 0. Given the local coordinate z and the ordering of the eigenvalues, t
and m are uniquely determined by A, independently of the choice of gauge. We call them
the singularity data at 0. If the ordering is changed, then the diagonal entries are permuted;
if the coordinate is changed, then m is unchanged, while t �→ t ′, where t ′ is obtained from
t by making the coordinate transformation and truncating the Taylor series in z.

If one looks for a gauge transformation g(z) = g0 +g1z+ . . . such that (A.2) holds with
R = 0, then the coefficients gi can be determined uniquely once a choice has been made
for g0 to diagonalise A−r−1. For each such choice, one can, therefore, find a unique formal
solution

yf = gf(z) exp(Tz−r +m log z).

In general, the formal series does not converge. However, by truncating, one can make R
vanish to arbitrarily high order at z = 0.

A.3. Sectors and special solutions

The eigenvalues λi of A−r−1 determine a sequence of Stokes’ rays through the origin,
on which Re(z−r (λi − λj )) changes sign for some pair of eigenvalues. Given a pair of
consecutive rays (in order around the unit circle), with arguments θ1, θ2, we define a sector
S by

S =
{
z|θ1 − π

2r
< arg(z) < θ2 + π

2r

}
. (A.3)
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For each such sector S, there is a unique special solution

yS = gS(z) exp(tz−r +m log z),

such that gS ∼ gf as z → 0 in S. (See, e.g. [2] for a careful account of this proposition).
The solutions yS are independent of the choice of coordinate (as maps D → G). They

are uniquely determined in each sector by the choice of g0. So, as sections of the principal
bundle over each sector, they are determined uniquely by the choice of the frame at the
origin in which A−r−1 is diagonal.

A.4. Regular singularities

In the regular case (r = 0), (A.2) still holds, with t = 0, provided that the eigenvalues
of A−1 are distinct. The formal series for g can be found provided that, in addition, no two
eigenvalues differ by an integer. It then necessarily converges, so yf is a solution.

A.5. Global systems

LetX be a compact Riemann surface. For each k-tuple r = (r1, . . . , rk) of non-negative
integers, we denote by Dr(X,E), or simply by Dr, the space of meromorphic sl(n,C)-
connections ∇ = d + α on the trivial vector bundle E = X × Cn with k poles of order (at
most) r1 + 1, . . . , rk + 1. 8

If we choose a local trivialisation and a coordinate z that vanishes at one of the poles, a
connection ∇ ∈ Dr is given in a neighbourhood of the pole by (A.1). 9

A.6. The monodromy representation

A local G-valued solution y to the equation d + αy = 0 can be continued analytically:
it is singular at the poles, and multi-valued (single-valued on the covering space of the
complement of the poles). If

γ : [0, 1] → CP1 \ {a1, . . . , ak}, γ (0) = γ (1) = z0

is a closed loop and z0 is some fixed base point, then we have y(γ (1)) = Mγ ∈ G for some
monodromy matrix Mγ which depends only on the homotopy class of γ .

Definition 3. The monodromy representation of (2) it is the homomorphism

π1(CP1 \ {a1, . . . , ak}) → G : [γ ] �→ Mγ .

The monodromy representation is independent of z0 and the choice of y up to conjugation
by a fixed element of G.

8 Note that α determines a holomorphic map X → Pg.
9 When X = CP1, we have α = −A dz, where z is a stereographic coordinate and A is defined globally as a

rational section of g⊗O(−2). If all its singularities are at finite values of z, then A has N poles and A = O(z−2)

as z → ∞; but if one of the singularities is at infinity, then A = O(zr−1) as z → ∞, where r is the rank.
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A.7. Deformations

Definition 4. Let ∇0,∇1 ∈ Dr(X). A deformation of ∇0 into ∇1 is a smooth path ∇t ∈
Dr(X), t ∈ [0, 1], from ∇0 to ∇1.

We are interested in the deformations of a connection ∇0 into a second ∇1 (or equivalently
of α0 into α1) while preserving certain properties of the corresponding linear system.

Proposition 10. A deformation ∇t has constant monodromy representation (up to conju-
gation) if and only if

d∇t
dt

= ∇tΩt

for some family of holomorphic maps Ωt (depending smoothly on t) from the complement
of the poles of ∇t in X into g.

There is an awkwardness in the terminology here: it is important to keep in mind that
‘having the same monodromy representation’ is not the same as ‘isomonodromic’ when
irregular singularities are present.

Proof. By fixing a base point (disjoint from the poles) and a frame at the base point, we can
find a solution yt for each t which depends smoothly on t . If the monodromy representation
is constant, then we can find a matrixKt ∈ G for each t such that the monodromy matrices
of ytKt are constant. If we take t close to t ′ and exclude small discs around the poles of ∇t ,
then gtt′ = ytKtK

−1
t ′ y

−1
t ′ is single-valued, and we can construct Ωt in (C1) by putting

Ωt = ∂gtt′

∂t ′

∣∣∣∣
t ′=t

.

(This is holomorphic except at the poles of ∇t .)
Conversely, if we are given Ωt , then d − A dz −Ω dt is a flat connection on the trivial

bundle over

(X \ poles)× [0, 1].

Its holonomy coincides with the monodromy At for each t , and so the monodromy repre-
sentation must be constant up conjugacy. �

A.8. Isomonodromic deformations

We now consider deformations (Xt ,∇t ) in which we change bothX and the connection ∇.
Let a be a pole of ∇ and S a sector at a. Then we have a solution yS,a to the system

∇y = 0, uniquely determined up to the choice of the frame at a in which the leading
coefficient of A is diagonal. If a′ and S ′ are another pole and sector at a′, and if γ is a path
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with initial point near a in S and endpoint near a′ in S ′, then we can continue yS,a along
γ . We shall have

yS,a = yS ′,a′CS,S ′,a,a′,γ ,

where CS,S ′,a,a′,γ is a constant matrix. These matrices are uniquely determined by A up to

CS,S ′,a,a′,γ �→ DaCS,S ′,a,a′,γ D
−1
a′ ,

where, for each pole a, Da is the product of a diagonal matrix and a permutation matrix.
The matrices connecting the special solutions in adjacent sectors at the same pole are called
Stokes’ matrices.

As we deform ∇ and X, we can vary S,S ′, γ , and the special solutions continuously.

Definition 5. A deformation is isomonodromic if the exponents of formal monodromy and
the matrices CS,S ′,a,a′,γ are constant, for an appropriate choice of special solutions.

An isomonodromic deformation has constant monodromy representation, but the con-
verse is not true except in the Fuchsian case (all singularities regular). The following char-
acterisation of the isomonodromy property is implicit in [9].

We can cover Xt by discs Di varying continuously with t such that each pole lies in just
one disc. On each disc Di , we can choose a coordinate zi such that, if ai ∈ D is a pole,
then zi = 0 at ai , independently of t . We shall use these coordinates to identify the discs as
t varies.

Proposition 11. A deformation (Xt ,∇t )with constant monodromy representation is isomon-
odromic if and only if

1. in Di , d∇t /dt = ∇tΩit for some meromorphic Ωit : Di → g (depending smoothly on
t);Ωit is holomorphic except possibly at a singularity of αt , where it has a pole of order
at most ri if αt has a singularity of rank ri in Di ;

2. on the intersectionDi ∩Dj of two discsΩit −Ωjt = iTijαt for some holomorphic vector
field Tij.

Proof. We shall look at the proof in outline. Suppose that the deformation is isomon-
odromic. Let yt be a solution to ∇t yt = 0, depending continuously on t and with constant
monodromy (we have to keep in mind that yt is multi-valued and singular at the poles).

Let Di be a disc containing a pole (at zi = 0) and put

gitt′(zi) = yS(zi)y′−1
S ′ (zi),

where yS and y′
S ′ are the special solutions at t and t ′ in the corresponding sectors at one of

the poles. Then, for t ′ close to t , gtt′ is a single-valued holomorphic map Di \ {0} → g; it
is independent of sector, because the Stokes’ matrices are the same at t and t ′. Once it is
established that it is possible to differentiate the asymptotic expansions term-by-term, it is
immediate that Ωit = ∂t ′gtt′ |t ′=y is meromorphic, and of the required form.
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On a discDi that does not contain a singularity, we put gitt′ = yt (zi)yt ′(zi)
−1, and define

Ωit in the same way. If we choose the branch of yt to vary continuously with t , gitt′ is
independent of the choice of branch because the monodromy of yt is independent of t .

Given yt , the only freedom in the construction of Ωit is in the choice of the coordinate
zi , and hence in the local identification of the discs on the different Riemann surfaces. A
different choice for each t will add iT α to Ωit for some local holomorphic vector field T .
Thus condition 2 holds on the overlap of two discs.

To prove the converse, suppose thatΩit is meromorphic, as stated. Choose a continuously
varying sector S at the pole, and let

yS(zi, t) = gS,a(zi) exp(tz−r
i +m log zi)

be the corresponding special solution. Then, by writing ∇t = dz −At dzi and dropping the
subscripts, we have

∂

∂z

(
∂y

∂t
−Ωy

)
= ∂A

∂t
y + A

∂y

∂t
− ∂Ω

∂t
y −ΩAy = A

(
∂y

∂t
−Ωy

)
.

It follows that

∂y

∂t
−Ωy = yK

for some matrix K , which can depend of t but not z. Therefore

g−1
S

[
∂gS
∂t

+ gS
∂

∂t

(
t

zr

)
−ΩgS

]
= etz−r+m log z K e−tz−r−m log z.

The left-hand side is asymptotic to a power series, divided by zr+1, as z → 0 in S (the
same series for each sector at the pole). In the case r > 0, each off-diagonal entry on
the right-hand side has an exponential factor which must blow up as z → 0 along some
directions in S since the angle of the sector S is more than π/r . This is a contradiction
unless the off-diagonal entries inK all vanish. ThusK is a z-independent diagonal matrix.
It can be absorbed into the special solutions to give that

∂yS
∂t

= ΩtyS ,

and hence that the C matrices are constant. This is also true, more simply, in the regular
case since the formal solutions then converge. �

Appendix B. Symplectic form on Cr

We prove here that the tensor in (14) is a symplectic form on Cr .

Proposition 12. ω is a symplectic form on Cr , independent of the choice of C1.

Proof. From the definitions, C2r+1 = e−2π im C1M and, in variational notation,

δSiS
−1
i = Ci(C

−1
i δCi − C−1

i+1δCi+1)C
−1
i . (B.1)
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We must show that ω is skew-symmetric, closed, and non-degenerate. From the first con-
straint, we have tr(δSiS

−1
i δ′SiS−1

i ) = 0. It follows that

0 =
2r∑
1

tr(δSiS
−1
i δ′SiS−1

i ) =
2r∑
1

tr((C−1
i δCi−C−1

i+1δCi+1)(C
−1
i δ′Ci−C−1

i+1δ
′Ci+1).

However

2r∑
1

tr(C−1
i+1δCi+1C

−1
i+1δ

′Ci+1)

=
2r∑
1

tr(C−1
i δCiC

−1
i δ′Ci)−4π2 tr(δmδ′m)− 2π i tr(δmδ′C1C

−1
1 + δ′mδC1C

−1
1 ).

The skew-symmetry follows. A similar calculation, starting from

tr(δSiS
−1
i δ′SiS−1

i δ′′SiS−1
i ) = 0,

shows that ω is closed. To show that ω is non-degenerate, we note that if ω(Y, ·) =,
then δC1C

−1
1 − π iδm is anti-diagonal, PiδCiCiP

−1
i is lower triangular for each i, and

PiδCiC
−1
i P−1

i is upper triangular. However, from (B.1),

δCi+1C
−1
i+1 = S−1

i δCiC
−1
i Si − S−1

i δCiC
−1
i Si .

Therefore, δCiC
−1
i is diagonal and so δCiC

−1
i = π iδm for each i. It then follows from the

second constraint (C2) in the definition of Cr that δm = 0.
If we make a different choice for C1 at each point, then the effect is to replace Ci by

CiK , where K is independent of i. This adds

1

2π i

2r∑
1

tr(CiδKC
−1
i δ′SiS−1

i )− tr(C1δKC−1
1 δ′m)

to ω(Y, Y ′), which vanishes by (B.1). �

Proof of Proposition 5. The manipulations are slightly more transparent in the classical
variational notation, although it is straightforward to translate this into the language of
differential forms.

We shall evaluate σ(Y, Y ′) in (11) by putting Ω = δyy−1, Ω ′ = δ′yy−1. We shall then
shrink the contour to the origin and use the asymptotic behaviour of the yis.

For each i, choose zi ∈ Si ∩ Si+1 on the contour with z2r+1 = z1, and define log z by
making a cut along the ray through the origin and z1. On each sector,

Ω = Ωi + yiδCi C
−1
i y−1

i ,

where Ωi = δyi y
−1
i . Moreover,

∇(yiδCiC−1
i y−1

i ) = 0,
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since Ci is independent of z. Therefore, in the notation of (11),

1

2π i

∮
tr(Ω∇Ω ′) = 1

2π i

2r∑
1

∫ zi+1

zi

tr(Ωi∇Ω ′
i )+ 1

2π i

2r∑
1

(xi(zi+1)− xi(zi)), (B.2)

where zi is some point on the contour in Si ∩ Si+1, xi = tr(δCiC
−1
i y−1

i δ′yi), and the
integrals are along segments of the contour. However,

xi+1 − xi = tr(δCiδC
−1
i δ′SiS−1

i − S−1
i δSiy

−1
i+1δ

′yi+1). (B.3)

This follows from the two relations yi = yi+1S
−1
i and Ci = SiCi+1, which imply that

tr(δCiC
−1
i y−1

i δ′yi) = tr(δCiC
−1
i Siy

−1
i+1(δ

′yi+1)S
−1
i − δCiC

−1
i δ′SiS−1

i ),

and

S−1
i δCiC

−1
i Si = δCi+1C

−1
i+1 − S−1

i δSi .

As z → 0 in Si ∩ Si+1, the second term on the right-hand side of (B.3) goes to zero by
(13). Moreover,

x2r+1 − x1 = 4π2 tr(δmδ′m)+ 2π i tr(δC1C
−1
1 δ′m)− 2π i(δmy−1

1 δy1).

To deal with the first term in (B.2), we note that

Ωi = Θ + gδmg−1 log z+ O(zN)

as z → 0 in Si for some large N (depending on the truncation of the formal power series).
Therefore in Si

tr(Ωi∇Ω ′
i )= tr(Θ∇Θ ′)+ tr

[(
g−1δg + δt

zr

)
δ′m−

(
g−1δ′g + δ′t

zr

)
δm

]
dz

z

+∂z(tr(δ′m(g−1δg + z−r δt)) log z) dz+ tr(δmδ′m) log z
dz

z
+ O(N ′),

for some large N ′. We therefore have

1

2π i

2r∑
1

∫ zi+1

zi

tr(Ωi∇Ω ′
i )=

1

2π i

∮
tr(Θ∇Θ ′)+ tr(γ δ′m− γ ′δm)+ tr(δ′my−1

1 δy1)z1

+π i tr(δmδ′m)+ ε

where ε → 0 as the contour is shrunk. The proposition follows by putting the two terms
together, by shrinking the contour towards z = 0, and by using the definition (14). �
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